Math, asked by avinash2869, 1 year ago

1+tan^2theta/1+cot^2theta=(1-tan theta/1-cot theta)^2=tan^2 theta

Answers

Answered by shijmol26
16

Answer:

The solution is given in the pic.

Hope it helps you.



Attachments:
Answered by rockyverma1227
8

1+tan^2theta/1+cot^2theta=(1-tan theta/1-cot theta)^2=tan^2 theta

let theta be A

1+tan^2 A /1+cot^2 A = (1-tan A/1-cot A)^2=tan^2 A

(i) 1+tan^2 A /1+cot^2 A = tan^2 A

L.H.S

1+tan^2 A /1+cot^2 A

{ 1+tan^2 A = sec^2 A

1+cot^2 A = cosec^2 A}

1+tan^2 A /1+cot^2 A = sec^2 A/ cosec^2 A

{ sec^2 A = 1/cos^A

 cosec^2 A = 1 / sin^A }

sec^2 A/ cosec^2 A = 1/cos^2 A / 1 / sin^2 A

sin^2 A /cos^2 A

= tan^2 A


(ii) (1-tan A/1-cot A)^2=tan^2 A

L.H.S

(1-tan A/1-cot A)^2

(1- sin A /cos A  /    1- cos A /sin A )^2

( cos A - sin A /cos A  /    sin A - cos A /sin A )^2

(1 /cos A  /  1 /sin A )^2

( sin A /cos A) ^2

(tan A) ^2

= tan^2 A

Similar questions