Math, asked by adarshsinghsingh488, 6 months ago

[1+tan^2theta]×sin^2theta/tantheta=tantheta

Answers

Answered by Aryan0123
4

Given: \dfrac{(1 + tan^{2} \theta) \times sin^2 \theta}{tan \theta} = tan \theta\\

Proof:

LHS = \dfrac{(1 + tan^{2} \theta) \times sin^2 \theta}{tan \theta}

\dfrac{(1 + \dfrac{sin^2\theta}{cos^2\theta})\times sin^2\theta }{tan\theta} \\\\\dfrac{(\dfrac{cos^2\theta + sin^2\theta}{cos^2\theta})\times sin^2\theta }{tan\theta}\\\\\dfrac{(\dfrac{1}{cos^2\theta})\times sin^2\theta }{tan\theta}\\\\\dfrac{(\dfrac{sin^2\theta}{cos^2\theta})}{tan\theta}\\\\\dfrac{tan^2\theta}{tan\theta}\\\\tan\theta

= RHS

Hence Proved.

Trigonometric Identities used:

  • sin²Θ + cos²Θ =1

  • tan²Θ = \dfrac{sin^2\theta}{cos^2\theta}
Similar questions