(1+tan^2x)(1+sinx)(1-sinx)
Answers
Answered by
5
(1+tan^2x)(1+sinx)(1-sinx)
=(1+tan^2x)(1-sin^2 x)
=Sec^2 x. Cos^2 x [ (1+tan^2x)sec^2 x & (1-sin^2 x)=cos^2 x]
=1/cos^2 x*cos^2 x[sec^2 x=1/cos^2 x]
=1
Hope it helps ya
=(1+tan^2x)(1-sin^2 x)
=Sec^2 x. Cos^2 x [ (1+tan^2x)sec^2 x & (1-sin^2 x)=cos^2 x]
=1/cos^2 x*cos^2 x[sec^2 x=1/cos^2 x]
=1
Hope it helps ya
Answered by
2
the answer is 1.
(1+tan^2x)(1-sin^2x)
(sec^2x)(cos^2x)
1/cos^2x*cos^2c
=1
(1+tan^2x)(1-sin^2x)
(sec^2x)(cos^2x)
1/cos^2x*cos^2c
=1
Similar questions