Math, asked by anjanisukanya67, 11 months ago

(1+ tan 33) (1 + tan (12)
(1 + tan 18') (1 + tans 27)​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{(1+tan\,33^\circ)\,(1+tan\,12^\circ)\,(1+tan\,18^\circ)\,(1+tan\,27^\circ)}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{(1+tan\,33^\circ)\,(1+tan\,12^\circ)\,(1+tan\,18^\circ)\,(1+tan\,27^\circ)}

\underline{\textbf{Solution:}}

\mathsf{Suppose,\;A+B=45^\circ}

\implies\mathsf{tan(A+B)=tan\,45^\circ}

\implies\mathsf{\dfrac{tan\,A+tan\,B}{1-tan\,A\;tan\,B}=1}

\implies\mathsf{tan\,A+tan\,B=1-tan\,A\;tan\,B}

\implies\mathsf{tan\,A+tan\,B+tan\,A\;tan\,B=1}

\implies\mathsf{1+tan\,A+tan\,B+tan\,A\;tan\,B=2}

\implies\mathsf{1(1+tan\,A)+tan\,B(1+tan\,A)=2}

\implies\mathsf{(1+tan\,A)\,(1+tan\,B)=2}

\mathsf{Thus,\;we\;have}

\boxed{\mathsf{If\;A+B=45^\circ,\;then\;\;(1+tan\,A)\,(1+tan\,B)=2}}

\mathsf{Now,}

\mathsf{(1+tan\,33^\circ)\,(1+tan\,12^\circ)\,(1+tan\,18^\circ)\,(1+tan\,27^\circ)}

\textsf{By the above result,}

\mathsf{(1+tan\,33^\circ)\,(1+tan\,12^\circ){\times}\,(1+tan\,18^\circ)\,(1+tan\,27^\circ)=2{\times}2}

\implies\boxed{\mathsf{(1+tan\,33^\circ)\,(1+tan\,12^\circ){\times}(1+tan\,18^\circ)\,(1+tan\,27^\circ)=4}}

Answered by krishnaanandsynergy
1

Answer:

We can solve this question using trigonometric formula and trigonometeric table. Final Answer: \frac{(1+tan 33\textdegree) (1 + tan 12\textdegree)}{(1 + tan 18\textdegree) (1 + tan 27\textdegree)}=1

Step-by-step explanation:

Correct question \frac{(1+tan 33\textdegree) (1 + tan 12\textdegree)}{(1 + tan 18\textdegree) (1 + tan 27\textdegree)} =?

Step 1:

    =\frac{(1+tan 33\textdegree) (1 + tan 12\textdegree)}{(1 + tan 18\textdegree) (1 + tan27\textdegree)}

Step 2:

  • 12\textdegree can be written as 45\textdegree-33\textdegree in the numerator and 27\textdegree  can be written as  45\textdegree-18\textdegree in the denominator .So that,

    =\frac{(1+tan 33\textdegree) [1 + tan (45\textdegree-33\textdegree)]}{(1 + tan 18\textdegree) [1 + tan (45\textdegree-18\textdegree)]}

Step 3:

  • Formula: tan(A-B)=\frac{tan A-tanB}{1+tanA.tanB}
  • tan(45\textdegree-33\textdegree)=\frac{tan 45\textdegree-tan33\textdegree}{1+tan45\textdegree.tan33\textdegree}
  • tan(45\textdegree-18\textdegree)=\frac{tan 45\textdegree-tan18\textdegree}{1+tan45\textdegree.tan18\textdegree}
  • Now apply the above formula in step 2.

    =\frac{(1+tan 33\textdegree) [1 + (\frac{tan 45\textdegree-tan33\textdegree}{1+tan45\textdegree.tan33\textdegree})]}{(1 + tan 18\textdegree) [1 +( \frac{tan 45\textdegree-tan18\textdegree}{1+tan45\textdegree.tan18\textdegree})]}

Step 4:  

  • Value of tan45\textdegree=1 from trigonometeric table.

    =\frac{(1+tan 33\textdegree) [1 + (\frac{1-tan33\textdegree}{1+1.tan33\textdegree})]}{(1 + tan 18\textdegree) [1 +( \frac{1-tan18\textdegree}{1+1.tan18\textdegree})]}

    =\frac{(1+tan 33\textdegree) [1 + (\frac{1-tan33\textdegree}{1+tan33\textdegree})]}{(1 + tan 18\textdegree) [1 +( \frac{1-tan18\textdegree}{1+tan18\textdegree})]}

Step 5:

  • Take the L.C.M for 1 and tan33\textdegree.

    =\frac{(1+tan 33\textdegree) (\frac{1+tan33\textdegree+1-tan33\textdegree}{1+tan33\textdegree})}{(1 + tan 18\textdegree) ( \frac{1+tan18\textdegree+1-tan18\textdegree}{1+tan18\textdegree})}

Step 6:

  •  Add tan 33\textdegree and -tan33\textdegree.Addition value is zero.

      =\frac{(1+tan 33\textdegree) (\frac{1+1}{1+tan33\textdegree})}{(1 + tan 18\textdegree) ( \frac{1+1}{1+tan18\textdegree})}

      =\frac{(1+tan 33\textdegree) (\frac{2}{1+tan33\textdegree})}{(1 + tan 18\textdegree) ( \frac{2}{1+tan18\textdegree})}

Step 7:

  • Cancel 1+tan33\textdegree in the numerator and denominator.

      =\frac{2}{2}

      =1

Final Answer:  \frac{(1+tan 33\textdegree) (1 + tan 12\textdegree)}{(1 + tan 18\textdegree) (1 + tan 27\textdegree)}=1

Similar questions