Math, asked by kuhuuu, 11 months ago

(1-tan^4x)/(1+tan^4x)=(Cosx+sinx)/(Cosx-sinx) prove it plzz my exams are tomorrow.

For 100 points and brainlist answer.​

Answers

Answered by gopalberma
0

Step-by-step explanation:

manipulate the left side

1

+

tan

x

1

tan

x

=

1

+

sin

x

cos

x

1

sin

x

cos

x

rewrite numerator / denominator as single fractions.

=

cos

x

+

sin

x

cos

x

cos

x

sin

x

cos

x

multiply the fractions by ' inverting' the fraction on denominator.

cos

x

+

sin

x

cos

x

×

cos

x

cos

x

sin

x

=

cos

x

+

sin

x

cos

x

sin

x

=

right side

Answered by harendrachoubay
0

\dfrac{1-\tan^4 x}{1+\tan^4 x} =\dfrac{\cos x+\sin x}{\cos x-\sin x}, proved.

Step-by-step explanation:

Prove that, \dfrac{1-\tan^4 x}{1+\tan^4 x} =\dfrac{\cos x+\sin x}{\cos x-\sin x}.

L.H.S.=\dfrac{1-\tan^4 x}{1+\tan^4 x}

=\dfrac{1-\dfrac{\sin^4 x}{\cos^4 x}}{1+\dfrac{\sin^4 x}{\cos^4 x}}

= \dfrac{\cos^4 x-\sin^4 x}{\cos^4 x+\sin^4 x}

=\dfrac{(\cos^2 x)^2-(\sin^2 x)^2}{(\cos^2 x)^2+(\sin^2 x)^2}

= \dfrac{(\cos^2 x+\sin^2 x)(\cos^2 x-\sin^2 x)}{(\cos^2 x)^2+(\sin^2 x)^2}

Using the algebraic identity,

a^{2}-b^{2}=(a+b)(a-b)

= \dfrac{(1)(\cos^2 x-\sin^2 x)}{(\cos^2 x+\sin^2 x)^2-2\cos^2 x\sin^2 x}

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta = 1

=\dfrac{(\cos x+\sin x)(\cos x-\sin x)}{(1)^2-2\cos^2 x.\sin^2 x}

= \dfrac{1+\sin 2x}{\cos 2x}

R.H.S. = \dfrac{\cos x+\sin x}{\cos x-\sin x}

= \dfrac{\cos x+\sin x}{\cos x-\sin x}\times \dfrac{\cos x+\sin x}{\cos x+\sin x}

= \dfrac{(\cos x+\sin x)^2}{\cos^2 x-\sin^2 x}

=\dfrac{\cos^2 x+\sin^2 x+2\sin x\cos x}{\cos^2 x-\sin^2 x}

= \dfrac{1+\sin 2x}{\cos 2x}

L.H.S. = R.H.S. = \dfrac{1+\sin 2x}{\cos 2x}

Hence, \dfrac{1-\tan^4 x}{1+\tan^4 x} =\dfrac{\cos x+\sin x}{\cos x-\sin x}, proved.

Similar questions