Math, asked by riyx23, 9 months ago

(1-tan A)²+ (1-сot A )² = (SECA-COSECA) ²​

Answers

Answered by kumarmohith205
0

Step-by-step explanation:

Explanation:

(

1

+

tan

A

)

2

+

(

1

+

cot

A

)

2

=

(

sec

A

+

csc

A

)

2

tan

A

=

sin

A

cos

A

cot

A

=

cos

A

sin

A

sec

A

=

1

cos

A

csc

A

=

1

sin

A

(

1

+

sin

A

cos

A

)

2

+

(

1

+

cos

A

sin

A

)

2

=

(

1

cos

A

+

1

sin

A

)

2

(

cos

A

+

sin

A

)

2

cos

2

A

+

(

sin

A

+

cos

A

)

2

sin

2

A

=

(

sin

A

+

cos

A

)

2

sin

A

cos

A

(

cos

A

+

sin

A

)

2

(

1

cos

2

A

+

1

sin

2

A

)

=

(

cos

A

+

sin

A

)

2

(

1

sin

A

cos

A

)

sin

2

A

+

cos

2

A

sin

2

A

cos

2

A

=

1

sin

A

cos

A

1

(

sin

A

cos

A

)

2

=

1

sin

A

cos

A

(

sin

A

cos

A

)

2

=

sin

A

cos

A

(

sin

A

cos

A

)

2

sin

A

cos

A

=

0

sin

A

cos

A

(

sin

A

cos

A

1

)

=

0

sin

A

=

0

,

cos

A

=

0

,

sin

A

cos

A

1

=

0

sin

A

=

0

A

=

0

,

π

,

2

π

,

3

π

,

...

cos

A

=

0

A

=

π

2

,

3

π

2

,

5

π

2

,

7

π

2

,

...

...

sin

A

cos

A

=

0

1

2

sin

2

A

=

0

sin

2

A

=

0

2

A

=

0

,

π

,

2

π

,

3

π

,

...

A

=

0

,

π

2

,

π

,

3

π

2

,

2

π

,

5

π

2

,

3

π

,

7

π

2

,

...

...

Hence, the values ofA satisfying the equation

(

1

+

tan

A

)

2

+

(

1

+

cot

A

)

2

=

(

sec

A

+

csc

A

)

2

are,

A

=

...

...

,

7

π

2

,

3

π

,

5

π

2

,

2

π

,

3

π

2

,

π

,

π

2

,

0

,

π

2

,

π

,

3

π

2

,

2

π

,

5

π

2

,

3

π

,

7

π

2

,

...

...

Answered by sare83
1

Step-by-step explanation:

Given that,

To prove:

(1-tanA)² + (1-cotA)² = (secA-cosecA)²

Consider,LHS

⇒ (1-tanA)² + (1-cotA)²

(∵ (a-b)² = a² + b² - 2ab )

⇒ 1² + tan²A - 2(1)(tanA) + 1² + cot²A -2(1)(cotA)

⇒ (1 + tan²A) + (1 + cot²A) - 2tanA - 2cotA

(∵ sec²A - tan²A = 1 & cosec²A -cot²A = 1 )

⇒ sec²A + cosec²A - 2(tanA + cotA)

⇒ sec²A + cosec²A - 2(sinA/cosA + cosA/sinA)

(∵ tanA = sinA/cosA & cotA = cosA/sinA )

⇒ sec²A + cosec²A - 2((sin²A + cos²A)/(sinA.cosA))

(∵ sin²A + cos²A = 1 )

⇒ sec²A + cosec²A - 2(1/(sinA.cosA)

⇒ sec²A + cosec²A - 2((1/sinA).(1/cosA))

(∵ secA = 1/cosA & cosecA = 1/sinA)

⇒ sec²A + cosec²A - 2(cosecA.secA)

⇒ (secA - cosecA)²

⇒ RHS

∴ LHS = RHS

   Hence Proved

HOPE THIS WOULD BE HELPFUL FOR YOU

Similar questions