(1+tan A/2) /(1-tan A/2)=secA + tan
Answers
Answered by
0
Answer:
1+tanATanA/2=secA ,how to prove it?
Answers
LHS
= 1 + [ tan A. tan (A/2) ]
= 1 + [ sin A. sin (A/2) / cos A. cos (A/2) ]
= [ cos A. cos (A/2) + sin A. sin (A/2) ] / [ cos A. cos (A/2) ]
= [ cos ( A - (A/2) ) ] / [ cos A. cos (A/2) ]
= [ cos (A/2) ] / [ cos A. cos (A/2) ]
= 1 / ( cos A )
= sec A ............... (1)
... RHS
= [ tan A. cot (A/2) ] - 1
= [ sin A. cos (A/2) / cos A. sin (A/2) ] - 1
= { [ sin A. cos (A/2) - cos A. sin (A/2) ] / [ cos A. sin (A/2) ] }
= { [ sin ( A - A/2 ) ] / [ cos A. sin (A/2) ] }
= [ sin (A/2) ] / [ cos A. sin (A/2) ]
= 1 / ( cos A )
= sec A
= LHS ...... from (1) ...........
Similar questions