1) tanΘ = a/b, Prove that. a sinΘ + b sinΘ = √a² + b²
Answers
Answered by
14
Correct Question:-
If tan θ = a/b , then prove that:
a sin θ + b cos θ = √a² + b²
Answer:-
Given:
tan θ = a/b
We know that,
tan θ = Opposite side/Adjacent side
So,
Opposite side / adjacent side = a / b
This implies ,
- Opposite side = a
- Adjacent side = b
Using Pythagoras Theorem,
(Hypotenuse)² = (Adjacent side)² + (Opposite side)²
So,
(Hypotenuse)² = b² + a²
⟶ Hypotenuse = √a² + b²
Now,
we know,
sin θ = Opposite side/Hypotenuse.
So,
★ sin θ = a / √a² + b²
Similarly,
★ cos θ = b / √a² + b²
Now,
We have to prove:
a sin θ + b cos θ = √a² + b²
⟶ a [ a / √a² + b² ] + b [ b / √a² + b² ] = √a² + b²
⟶ (a² + b²) / √a² + b² = √a² + b²
⟶ (√a² + b²)(√a² + b²) / √a² + b² = √a² + b²
[ Since, a = √a × √a ]
⟶ √a² + b² = √a² + b²
Hence, Proved.
Similar questions