Math, asked by darshankrishna576, 1 month ago

1\tan A + cot A = cos A sin A​

Answers

Answered by rajdeep28042006
1

Answer:

L.H.S= (1+cotA+tanA)(sinA−cosA)

=(1+

sinA

cosA

+

cosA

sinA

)(sinA−cosA)

=(

sinAcosA

sinAcosA+cos

2

A+sin

2

A

)(sinA−cosA)

=(1+sinAcosA)(

sinAcosA

sinA−cosA

)

Now,

R.H.S=sinAtanA−cotAcosA

=sinA

cosA

sinA

sinA

cosA

cosA

=

cosA

sin

2

A

sinA

cos

2

A

=

sinAcosA

sin

3

A−cos

3

A

=

sinAcosA

(sinA−cosA)

(sin

2

A+cos

2

A+sinAcosA)

=(1+sinAcosA)

sinAcosA

(sinA−cosA)

Hence,

L.H.S=R.H.S

proved

Answered by MisSadaa007
4

R.H.S=sinAtanA−cotAcosA

=sinA cosA sin A−sin A cosA cosA

=cos Asin2 A−sin Acos2 A

=sinA cos Asin3A −cos 3A

=sinAcosA(sinA−cosA) (sin2A+cos2A+sinAcosA)

=(1+sinAcosA)sinA cosA (sinA−cosA)

Hence,

L.H.S = R.H.S

proved

Similar questions