Math, asked by 6294manya, 1 month ago

(1) tan A + cot A = sec A cosec A​

Answers

Answered by sangwanyash03
0

Step-by-step explanation:

taking LHS

tanA + cotA

sinA/cosA + cosA / sinA

sin^2A +cos^2A/ sinA cosA

1/ sinA cosA ; 1/sinA = cosecA, 1/ cosA = secA

secA cosecA

hence proved

Answered by UtsavPlayz
0

  \tan(A)  +  \cot(A)  =  \sec(A)  \csc(A)

\tan(A) +  \dfrac{1}{\tan(A)}  = \sec(A)  \csc(A) \\

 \dfrac{\tan ^{2} (A) + 1}{\tan(A)}  = \sec(A)  \csc(A)

 \dfrac{ \sec ^{2} (A) }{ \tan(A) }  = \sec(A)  \csc(A)

 \sec(A)  \times  \dfrac{ \sec(A) }{ \tan(A) }  = \sec(A)  \csc(A)  \\

\sec(A)  \csc(A) = \sec(A)  \csc(A)

Hence, Proved.

Similar questions