(1+ tan A - sec A ) (1+ tan a + sec A)
Answers
Answered by
0
Answer:
L.H.S
(1+tanA−secA)×(1+tanA+secA)
=(1+tanA)
2
−(secA)
2
[∵(a+b)(a−b)=a
2
−b
2
)]
=1+tan
2
A+2tanA−sec
2
A
=sec
2
A+2tanA−sec
2
A [∵sec
2
θ=1+tan
2
θ]
=2tanA
=R.H.S.
∴L.H.S=R.H.S
(1+tanA−secA)×(1+tanA+secA)=2tanA
Hence proved.
Answered by
0
Answer:
2tanA
Step-by-step explanation:
here formula used here is (a+b)(a-b)= a2-b2
Attachments:
Similar questions