Math, asked by RaniJoyce, 4 months ago

(1 - tan A) square + (1+tan A) square=2 sec square A



Answers

Answered by abhinavrajput66
1

Step-by-step explanation:

Take left hand side of the equation .

Attachments:
Answered by Anonymous
36

Question

 \sf{ {(1 - tanA)}^{2}  +  {(1  +  tanA)}^{2}  = 2 {sec}^{2} A}

To prove

 \to \sf{L.H.S= R.H.S}

Solution

L.H.S:-

{ \underline{  \boxed{\sf{identity \: used =  ({a + b})^{2} }}}}

  \sf :  \implies{(1 + tanA)}^{2}  +  {(1 - tanA)}^{2}  = 1 +  {tan}^{2} A - 2 \: tanA + 1 +  {tan}^{2} A + 2tanA \\

 \sf{  :  \implies \:  {1 - tanA}^{2}  +  {1 + tanA}^{2}  = 2(1  +   {tan}^{2}A})

 \sf :  \implies {(1 - tanA)}^{2}  +  {(1  +  tanA)}^{2}  = 2 + 2 {tan}^{2} A  \\

  \sf{ \to \color{grey} \: we \: know \: that(1  +  {tan}^{2} A) =  {sec}^{2} A}

  \sf{: \implies(1  +  {tan}^{2} A) +  {(1 - tan}^{2} A) = 2 {sec}^{2} A}

 \sf{ \color{grey} \therefore \: R.H.S= L.H.S}

Hence proved....

__________________________

know more !!

  • sin² a + cos² a = 1

  • 1+tan²a = sec² a

  • cosec²a = 1 + cot² a

  • Sin (90 – θ) = Cos θ

  • Cos (90 – θ) = Sin θ

  • Tan (90 – θ) = Cot θ

  • Cot ( 90 – θ) = Tan θ

  • Sec (90 – θ) = Cosec θ

  • Cosec(90 – θ) = Sec θ

________________________

Similar questions