(1+tan A. tanB)²+
(tanA-tan B)²=sec²A.sec²B
Answers
Step-by-step explanation:
1+tanA^2.tanB^2+2tanA.tanB+tanA^2+tanB^2
-2tanA.tanB
=1+tanA^2(1+tanB^2)+tanB^2
=1+tanA^2.secB^2+tanB^2
=1+tanA^2/cosB^2+sinB^2/cosB^2
=cosB^2+(tanA^2+sinB^2)/cosB^2
=(sinB^2+cosB^2)+tanA^2/cosB^2
=1+tanA^2/cosB^2
=secA^2.secB^2(proved)
please follow me
Solution:-
(1 + tan A . tanB)²+ (tanA - tan B)² = sec²A . sec²B
Now,
(1 + tanA . tanB)²+ (tanA - tanB)² = LHS
= (1² + 2tanA . tanB + tan²A . tan²B) + (tan²A - 2tanA . tanB + tan²B)
= 1 + 2tanA . tanB + tan²A.tan²B + tan²A - 2tanA . tanB + tan²B
= 1 + tan²A . tan²B + tan²A + tan²B
= 1 + tan²B( tan²A + 1)
= 1 + tan²B . (tan²A + 1)
= sec²B . sec²A = sec²A . sec²B
But sec²A . sec²B = RHS
•°• LHS = RHS
•°•(1 + tanA . tanB)² + (tanA - tanB)² = sec²A . sec²B
Hence proved that,
Hence proved that,(1 + tanA . tanB)² + (tanA - tanB)² = sec²A . sec²B