Math, asked by jahnavi011106, 1 month ago

1+ tan square theta × 1- sin theta whole square equal to 1​

Answers

Answered by CopyThat
52

Question:

\rightarrowtail \bold{Prove\;that\;(1+tan^{2}\theta)(1-sin\theta)(1+sin\theta)=1}

Solution:

  • 1 + tan²Ф = sec²Ф

\mapsto \bold{sec^{2}\theta (1-sin\theta)(1+sin\theta)}

  • (a + b)(a - b) = a² - b²

\mapsto \bold{sec^{2}\theta(1^{2}-sin^{2}\theta)}

  • 1 - sin²Ф = cos²Ф

\mapsto \bold{sec^{2}\theta \;cos^{2}\theta}

  • secФ = 1/cosФ

\mapsto \bold{\dfrac{1}{cos^{2}\theta}\times cos^{2}\theta }

\Rrightarrow \bold{1}

  • ∴ L.H.S = R.H.S
Similar questions