Math, asked by kingr6392, 10 months ago

1-tan square theta/1+tan square theta =(cos square theta - sin square theta)​

Answers

Answered by Swarup1998
2

\boxed{\dfrac{1-tan^{2}\theta}{1+tan^{2}\theta}=cos^{2}\theta-sin^{2}\theta}

Concept to be used:

  • tan\theta=\dfrac{sin\theta}{cos\theta}

  • \dfrac{\frac{a}{b}}{\frac{c}{d}}=\dfrac{a}{b}\times\dfrac{d}{c}

  • sin^{2}\theta+cos^{2}\theta=1

  • 1+tan^{2}\theta=sec^{2}\theta

  • \dfrac{a\pm b}{c}=\dfrac{a}{c}\pm\dfrac{b}{c}

  • cos^{2}\theta\:sec^{2}\theta=1

Step-by-step explanation:

Method 1.

Here, L.H.S. is

\dfrac{1-tan^{2}\theta}{1+tan^{2}\theta}

=\dfrac{1-\dfrac{sin^{2}\theta}{cos^{2}\theta}}{1+\dfrac{sin^{2}\theta}{cos^{2}\theta}}

=\dfrac{\dfrac{cos^{2}\theta-sin^{2}\theta}{cos^{2}\theta}}{\dfrac{cos^{2}\theta+sin^{2}\theta}{cos^{2}\theta}}

=\dfrac{cos^{2}\theta-sin^{2}\theta}{cos^{2}\theta}\times\dfrac{cos^{2}\theta}{cos^{2}\theta+sin^{2}\theta}

=\dfrac{cos^{2}\theta-sin^{2}\theta}{1}\times\dfrac{1}{1}

=cos^{2}\theta-sin^{2}\theta

that is, R.H.S.

Thus proved.

Method 2.

Here, L.H.S. is

\dfrac{1-tan^{2}\theta}{1+tan^{2}\theta}

=\dfrac{1-tan^{2}\theta}{sec^{2}\theta}

=\dfrac{1}{sec^{2}\theta}-\dfrac{tan^{2}\theta}{sec^{2}\theta}

=cos^{2}\theta-\dfrac{sin^{2}\theta}{cos^{2}\theta}\dfrac{1}{sec^{2}\theta}

=cos^{2}\theta-sin^{2}\theta

that is, R.H.S.

Thus proved.

NOTE:

However,

\dfrac{1-tan^{2}\theta}{1+tan^{2}\theta}=cos^{2}\theta-sin^{2}\theta

\Rightarrow \dfrac{1-tan^{2}\theta}{1+tan^{2}\theta}=cos2\theta

Read more on Brainly.in

1. What is the value of tan36° in trigonometry?

- https://brainly.in/question/5927670

2. If tanA=\dfrac{m}{n}, prove that, m\:sinA+ n\:cosA=\sqrt{m^{2}+n^{2}}.

- https://brainly.in/question/15817313

#SPJ3

Similar questions