Math, asked by singharpit5978, 1 year ago

(1+tan theta)^2 +(1+cot theta)^2=(sec theta +cosec theta)^2 prove it

Answers

Answered by drashti5
50
hope this helps..........
Attachments:
Answered by hukam0685
1

 \bf \red{( {1 +  tan \:  \theta })^{2}  + ( {1 +  cot \:  \theta })^{2} = ( {sec  \:  \theta +  cosec \:  \theta })^{2} }\\

The trigonometric equation has been proved.

Given:

  • ( {1 +  tan \:  \theta })^{2}  + ( {1 +  cot \:  \theta })^{2} = ( {sec  \:  \theta +  cosec \:  \theta })^{2} \\

To find:

  • Prove the trigonometric equation.

Solution:

Identities to be used:

  1. ( {x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\
  2. cos^{2}\: \theta + {sin}^{2} \theta=1\\
  3. 1+tan^2\: \theta = {sec}^{2} \theta\\
  4. 1+cot^{2}\: \theta = {cosec}^{2} \theta\\
  5. \frac{1 }{{sin} \:  \theta}={cosec} \theta\\\\
  6. \frac{1 }{{cos} \:  \theta}={sec} \theta\\\\
  7. \frac{cos\: \theta  }{{sin} \:  \theta}={cot} \theta\\\\
  8. \frac{sin\: \theta  }{{cos} \:  \theta}={tan} \:\theta\\\\

Step 1:

Open Identity 1 in LHS.

\frac{1 }{{sin} \:  \theta}={cosec} \theta\\

 = ( {1 +  tan \:  \theta })^{2}  + ( {1 +  cot \:  \theta })^{2}  \\

or

 = 1 +  {tan}^{2} \theta + 2{tan} \theta + 1 +  {cot}^{2} \theta + 2{cot} \theta \\

Step 2:

Apply trigonometric Identity 3 and 4.

= 1 +  {sec}^{2} \theta  - 1+ 2{tan} \theta + 1 +  {cosec}^{2} \theta - 1 + 2{cot} \theta \\

or

=  {sec}^{2} \theta+ 2{tan} \theta +  {cosec}^{2} \theta +   2{cot} \theta \\

or

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2({cot} \theta +  {tan} \theta )\\

Step 3:

Apply Identity 7 and 8 in bracket.

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2 \left( \frac{{cos}  \: \theta }{{sin} \:  \theta } +  \frac{{sin}  \: \theta }{{cos} \:  \theta }  \right)\\

or

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2 \left( \frac{{cos^{2} }  \: \theta + {sin}^{2} \theta }{{sin} \:  \theta  \: cos \: \theta}   \right)\\

or

Apply Identity 2.

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2 \left( \frac{1 }{{sin} \:  \theta  \: cos \: \theta}   \right)\\

or

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2 \frac{1 }{{sin} \:  \theta}. \frac{1 }{{cos} \:  \theta} \\

or

Apply Identity 5 and 6.

=  {sec}^{2} \theta +  {cosec}^{2} \theta +   2 cosec \:  \theta. {sec} \:  \theta \\

or

Apply Identity 1.

 = ( {sec \:  \theta +cosec \:  \theta})^{2}  \\

= RHS

Thus,

The trigonometric equation has been proved.

 \bf ( {1 +  tan \:  \theta })^{2}  + ( {1 +  cot \:  \theta })^{2} = ( {sec  \:  \theta +  cosec \:  \theta })^{2} \\

Learn more:

1) Prove this identity in trigonometry

https://brainly.in/question/21098065

2) Evaluate:

cos 37 cosec 53/

tan 5 fan 25 tan 45 tan65 tan 85

pls help...its urgent

https://brainly.in/question/24090200

Similar questions