Math, asked by chanducs5759, 9 months ago

(1+tan theta + sec theta) (1+cot theta - cosec theta)1+tan theta + sec theta) (1+cot theta - cosec theta)

Answers

Answered by BRAINLYADDICTOR
109

 <marquee behaviour-move><font color="yellow black"><h1>ANSWER:</ ht></marquee>

➡️(1+tanΘ + secΘ) (1+cotΘ - cosecΘ)(1+tanΘ+ secΘ) (1+cotΘ - cosecΘ)

➡️(1+tanΘ + secΘ)(1+tanΘ + secΘ) (1+cotΘ - cosecΘ) (1+cotΘ - cosecΘ)

➡️(1+tanΘ+ secΘ+tanΘ +tan^2Θ+tanΘ secΘ+secΘ+secΘtanΘ+sec^2Θ) (1+cotΘ- cosecΘ+cotΘ+cot^2Θ-cotΘ cosecΘ-cosecΘ-cotΘcosecΘ+cosec^2Θ )

FOLLOW ME AND THANK MY ANSWERS

&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>h1{</p><p></p><p>text-transform:uppercase;</p><p></p><p>margin-top:90px;</p><p></p><p>text-align:center;</p><p></p><p>font-family:Courier new,monospace;</p><p></p><p>border:3px solid rgb(60,45,8);</p><p></p><p>border-top:none;</p><p></p><p>width:67%;</p><p></p><p>letter-spacing:-6px;</p><p></p><p>box-sizing:border-box;</p><p></p><p>padding-right:5px;</p><p></p><p>border-radius:6px;</p><p></p><p>font-size:35px;</p><p></p><p>font-weight:bold;</p><p></p><p>}</p><p></p><p>h1 span{</p><p></p><p>position:relative;</p><p></p><p>display:inline-block;</p><p></p><p>margin-right:3px;</p><p></p><p>}</p><p></p><p>@keyframes shahir{</p><p></p><p>0%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>40%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>50%</p><p></p><p>{</p><p></p><p>transform: translateY(-50px)rotate(180deg);;</p><p></p><p>}</p><p></p><p>60%</p><p></p><p>{</p><p></p><p>transform: translateY(0px)rotate(360deg);;</p><p></p><p>}</p><p></p><p>100%</p><p></p><p>{</p><p></p><p>transform: translate(0px)rotate(360deg);;</p><p></p><p>}}</p><p></p><p>h1 span</p><p></p><p>{</p><p></p><p>animation: shahir 3s alternate infinite linear;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(1)</p><p></p><p>{color:red;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(2)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(3)</p><p></p><p>{color:orange;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(4)</p><p></p><p>{color:pink;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(5)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(6)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(7)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(8)</p><p></p><p>{color:yellow;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>} </p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;meta name="viewport" content="width=device-width" &gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;center&gt;</p><p></p><p>&lt;div&gt;</p><p></p><p>&lt;h1&gt;</p><p></p><p>&lt;span&gt;A&lt;/span&gt;</p><p></p><p>&lt;span&gt;D&lt;/span&gt;</p><p></p><p>&lt;span&gt;D&lt;/span&gt;</p><p></p><p>&lt;span&gt;I&lt;/span&gt;</p><p></p><p>&lt;span&gt;C&lt;/span&gt; </p><p></p><p>&lt;span&gt;T&lt;/span&gt;</p><p></p><p>&lt;span&gt;O&lt;/span&gt; </p><p></p><p>&lt;span&gt;R&lt;/span&gt;</p><p></p><p>&lt;/h1&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;/center&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;</p><p></p><p>

</p><p></p><p>&lt;svg class= "heart" viewBox= "-2 -2 98.6 90.81"&gt;</p><p></p><p>&lt;title&gt;Corazon&lt;/title&gt;</p><p></p><p>&lt;path stroke= "firebrick" stroke-width= "3" d= "M86.81,8.15a27.79,27.79,0,0,1,0,39.33L47.48,86.81,8.15,47.48A27.81,27.81,0,0,1,47.48,8.15,27.79,27.79,0,0,1,86.81,8.15Z"/&gt;</p><p></p><p>&lt;/svg&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body {</p><p></p><p>display: grid;</p><p></p><p>min-height: 100vh;</p><p></p><p>justify-content: center;</p><p></p><p>align-content: center;</p><p></p><p>background: repeating-linear-gradient(circle,cyan,pink, lime);</p><p></p><p>background: repeating-radial-gradient(circle, cyan,pink, lime);</p><p></p><p>}</p><p></p><p>@keyframes heart-path {</p><p></p><p>99% {</p><p></p><p>stroke-dashoffset: 0;</p><p></p><p>fill: none;</p><p></p><p>}</p><p></p><p>100% {</p><p></p><p>fill: firebrick;</p><p></p><p>}</p><p></p><p>}</p><p></p><p>&lt;/style&gt;

Answered by Anonymous
4

GIVEN:-

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}  = 1 +  \sec \theta \cosec  \theta

TO FIND:-

 \tt lhs = rhs

SOLUTION:-

 \tt lhs \ratio  -

 \sf  \frac{ \tan \theta}{1 -  cot\theta }  +  \frac{  \cot \theta}{ 1 -  \tan \theta}

 \tt  =  \frac{ \frac{ \sin \theta  }{ \cos\theta } }{1 -  \frac{\cos\theta}{\sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{1 - \frac{ \sin \theta  }{ \cos\theta }}

 \tt =   \frac{ \frac{ \sin \theta  }{ \cos\theta } }{ \frac{ \sin \theta- \cos\theta}{  \sin \theta}  }  +    \frac{\frac{\cos\theta}{\sin \theta}  }{ \frac{  \cos\theta  -  \sin \theta  }{ \cos\theta }}

 \tt  =  \frac{ \sin \theta   }{ \cos \theta  }  \times  \frac{ \sin \theta  }{(\sin \theta - \cos \theta )   }  +  \frac{\cos \theta }{\sin \theta}  \times \frac{  \cos  \theta  }{( \cos  \theta -   \sin \theta )   }

 \tt =  \frac{  { \sin}^{2}\theta}{ \cos \theta( \sin \theta -  \cos \theta)  }  -  \frac{ { \cos }^{2}  \theta }{ \sin \theta( \sin \theta -  \cos \theta )    }

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [ \frac{ { \sin}^{2}  \theta }{ \cos \theta  }  -  \frac{ { \cos }^{2}  \theta}{ \sin \theta  } ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [    \frac{ { \sin}^{3  } \theta -  { \cos }^{3} \theta  }{ \sin \theta \cos \theta  }  ]

 \tt  =  \frac{1}{( \sin \theta  -  \cos \theta) } [   \frac{( \sin \theta -  \cos \theta)( { \sin}^{2}  \theta +  { \cos }^{2}    \theta +  \sin \theta \cos \theta )}{ \sin \theta \cos \theta    }   ]

 \tt  = \frac{(1 +  \sin \theta \cos \theta)}{( \sin \theta \cos \theta)}  =  \frac{1}{ \sin \theta \cos \theta  }  +  \frac{( \sin \theta \cos \theta)   }{( \sin \theta \cos \theta)  }

 =  \sec \theta \cosec \theta + 1

 = rhs

Similar questions