(1+tan theta + sec theta ) ( 1+cot theta - cosec theta ) = ?
justify
Answers
Answered by
618
HEY MATE ✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌
HERE IS YOUR ANSWER :-
____________________________________
_____________________________________
I HOPE IT MAY HELPFUL FOR YOU ✌✌✌✌✌✌✌✌✌✌✌✌✌✌
HERE IS YOUR ANSWER :-
____________________________________
_____________________________________
I HOPE IT MAY HELPFUL FOR YOU ✌✌✌✌✌✌✌✌✌✌✌✌✌✌
Attachments:
ankitsagar:
welcome
Answered by
17
To find,
(1+tanθ + secθ ) ( 1+cotθ - cosecθ)
Solution,
We start with converting, tanθ, secθ, cotθ and cosecθ in the form of sinθ and cosθ.
- tanθ = sinθ/cosθ
- cotθ = cosθ/sinθ
- cosecθ = 1/sinθ
- secθ = 1/cosθ
Substituting the values in the given relation we get,
= (1+tanθ + secθ ) ( 1+cotθ - cosecθ
= (1+sinθ/cosθ + 1/cosθ ) ( 1+cosθ/sinθ - 1/sinθ)
= ( 1+cosθ/sinθ - 1/sinθ) + sinθ/cosθ*( 1+cosθ/sinθ - 1/sinθ) + 1/cosθ*( 1+cosθ/sinθ - 1/sinθ)
= 1+cosθ/sinθ - 1/sinθ + sinθ/cosθ + 1 - 1/cosθ + 1/cosθ + 1/sinθ - 1/cosθ*sinθ
= 1 + cosθ/sinθ + sinθ/cosθ - 1/cosθ*sinθ
= 1 + ( θ + θ )/sinθ*cosθ - 1/cosθ*sinθ
{ θ + θ = 1 ]
= 1 + 1/cosθ*sinθ - 1/sinθ*cosθ
= 1
Therefore, the value of (1+tanθ + secθ ) ( 1+cotθ - cosecθ) is 1.
Similar questions