Math, asked by Anonymous, 1 year ago

(1+tan theta + sec theta ) ( 1+cot theta - cosec theta ) = ?
justify

Answers

Answered by ankitsagar
618
HEY MATE ✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌✌



HERE IS YOUR ANSWER :-


____________________________________
_____________________________________

I HOPE IT MAY HELPFUL FOR YOU ✌✌✌✌✌✌✌✌✌✌✌✌✌✌
Attachments:

ankitsagar: welcome
ankitsagar: thank you
Answered by SharadSangha
17

To find,

(1+tanθ + secθ ) ( 1+cotθ - cosecθ)

Solution,

We start with converting, tanθ, secθ, cotθ and cosecθ in the form of sinθ and cosθ.

  • tanθ = sinθ/cosθ
  • cotθ = cosθ/sinθ
  • cosecθ = 1/sinθ
  • secθ = 1/cosθ

Substituting the values in the given relation we get,

=  (1+tanθ + secθ ) ( 1+cotθ - cosecθ            

=  (1+sinθ/cosθ + 1/cosθ ) ( 1+cosθ/sinθ - 1/sinθ)

= ( 1+cosθ/sinθ - 1/sinθ) + sinθ/cosθ*( 1+cosθ/sinθ - 1/sinθ) + 1/cosθ*( 1+cosθ/sinθ - 1/sinθ)

= 1+cosθ/sinθ - 1/sinθ + sinθ/cosθ + 1 - 1/cosθ + 1/cosθ + 1/sinθ - 1/cosθ*sinθ

= 1 + cosθ/sinθ + sinθ/cosθ - 1/cosθ*sinθ

= 1 + ( cos^{2}θ + sin^{2}θ )/sinθ*cosθ - 1/cosθ*sinθ

{ cos^{2}θ + sin^{2}θ = 1 ]

=  1 + 1/cosθ*sinθ - 1/sinθ*cosθ

= 1

Therefore, the value of (1+tanθ + secθ ) ( 1+cotθ - cosecθ) is 1.

Similar questions