Math, asked by Anonymous, 11 months ago

(1 + tan1)(1+tan2)(1+tan3).................(1+tan45) = 2^n
then find the value of n

a) 22 b)24 c)23 d)12

Answers

Answered by rishu6845
7

plzzz give me brainliest ans and plzzzz follow me

Attachments:

Anonymous: Awesome Answer bro :-)
Anonymous: keep it up bro!! cool answer :)
Answered by Anonymous
17

Solution :-

We have got the series :-

(1 + tan1°)(1 + tan2°)(1 + tan3°) ....

(1 + 45°) = 2ⁿ

Now let us start solving LHS :-

 = \small{(1 + tan1^{\circ})(1 + tan2^{\circ})(1 + tan3^{\circ}) ....(1 + 45^{\circ})}

It can be grouped together like

 = \small{\left[\left((1 + tan1^{\circ})(1 + tan44^{\circ})\right)\left((1 + tan2^{\circ})(1+ tan43^{\circ})\right) ....\right](1 + 45^{\circ})}

Now we may go through this :-

If A + B = 45° then

( 1 + tanA )(1 + tanB)

 = (  1 + tanA )(1 + tan(45^{\circ} - B))

 = ( 1 + tanA) \left( 1 + \dfrac{ tan45^{\circ} - tanA}{ 1 + tan45^{\circ}tanA}\right)

  = ( 1 + tanA) \left( 1 + \dfrac{ 1 - tanA}{ 1+ tanA}\right)

  = ( 1 + tanA) \left(  \dfrac{1 + tanA 1 - tanA}{ 1+ tanA}\right)

  = ( 1 + tanA) \left(  \dfrac{ 2}{ 1+ tanA}\right)

 = 2

So the product of two Exept the one with 45° will give 2.

Therefore for there will be

→ 44 ÷ 2

→ 22 times 2

 = 2^{22} \times ( 1 tan45^{\circ})

 = 2^{22} \times ( 1 + 1 )

 = 2^{22} \times 2

 = 2^{23}

Hence

n = 23


Anonymous: Thanks bro :)
Anonymous: Pleasure..
Similar questions