(1+tan10°)(1+tan20°)(1+tan25°)(1+tan35°)=4
Answers
Step-by-step explanation:
1+tan10°=sin10°+cos10°cos10°=(2–√)(sin(10°+45°)cos10°)1+tan10°=sin10°+cos10°cos10°=(2)(sin(10°+45°)cos10°)
where sin(10°+45°)=(sin10°/2–√)+(cos10°/2–√)sin(10°+45°)=(sin10°/2)+(cos10°/2) from the formula for the sine of a sum. Then, continuing:
1+tan10°=(2–√)(sin(10°+45°)cos10°)=(2–√)(cos35°cos10°)1+tan10°=(2)(sin(10°+45°)cos10°)=(2)(cos35°cos10°)
using sin(10°+45°)=cos(90°−10°−45°)=cos35°sin(10°+45°)=cos(90°−10°−45°)=cos35°. Do the same with arguments of 20°,25°,35°20°,25°,35° in place of 10°10° and multiply the four resulting fractions together; all the trig functions cancel out of the product and you have just (2–√)4=4(2)4=4.
The business with A,B,CA,B,C, however, has me completely stumped. It does not enter the above equality at all!
Answer:: (1+ tan) (1+tan20) (1+tan 25) (1+ tan 35)=4
[(1+tan 10) (1+tn 35) (1+tan20) (I+ tan 25) = 4
(1 + tan10 + tan35 + tan tan35) (1+ tan 20+ tan 25+ tan 20⋅ tan 25)=4...
+Y= 45
tan+ tan Y/1-tanXtany=tan 45
tan X+tan Y= 1-tan. tan
tan n + tan Y + tan n. tan Y = 1
tan + tany + tan n. tany = 1
Now, Substituting value of 2 and Y in egn i in respective rea.
(1+tan10 + tan35+ tan10 tan35) (1+ tan 25+ tan 20+ tan 20. tan 25) = 4 (1+1)(1+1)