(1+ tan2
ө) (1+sinө) (1-sinө)=1
Answers
Answered by
1
Step-by-step explanation:
LHS:
(1+ tan²ө) (1+sinө) (1-sinө)
Using Identity: 1+ tan²ө = sec²ө,
we get,
( sec²ө)(1+sinө) (1-sinө) ==>
( sec²ө)(1² - sin²ө) [Since (a+b)(a-b) = a²-b²]
That is,
( sec²ө)(1-sin²ө) ==> ( sec²ө)( cos²ө) [ Using Identity: 1-sin²ө = cos²ө ]
==> [ 1/(cos²ө)] ( cos²ө )
Here, cos²ө gets cancelled out, giving,
====> 1.
RHS :
1.
So,
Since 1=1,
LHS = RHS.
Hence, verified.
Hope this helps!!!!
Similar questions
Political Science,
3 months ago
Computer Science,
3 months ago
Computer Science,
6 months ago
Computer Science,
6 months ago
Math,
10 months ago
Geography,
10 months ago