Math, asked by singhbanty1136, 8 months ago

(1+tan²A/1+cot²A)=(1-tanA/1-cotA)²=tan²A​

Answers

Answered by sahitya17
2

Step-by-step explanation:

please mark as brainliest if you understand ☺️

Attachments:
Answered by deve11
0

Step-by-step explanation:

(1+tan²A/1+cot²A)=(1-tanA/1-cotA)²=tan²A

Consider: (1+tan²A/1+cot²A)

[1+tan²A=sec²A. and. 1+cot²A=cosec²A.]

=> [sec²A/cosec²A]

[sec²A=1/cos²A. and cosec²A=1/sin²A]

=> [1/cos²A/1/sin²A]

=> [sin²A/cos²]

=> tan²A.

Now consider:(1-tanA/1-cotA)²

  =  > { (\frac{1 -  \frac{ \sin(a) }{ \cos(a) } }{1 -  \frac{ \cos(a) }{ \sin(a) } }) }^{2}  =  >   {( \frac{ \frac{ \cos(a)  -  \sin(a) }{ \cos(a) ) } }{ \frac{ \sin(a)  -  \cos(a) }{ \sin(a) } } )}^{2}

 =  >  {( \frac{ - ( \sin(a)  -  \cos(a) ) \times  \sin(a) }{( \sin(a)  -  \cos(a) ) \times  \cos(a) } )}^{2}

[(sinA-cosA) cancels]

=>(-sinA/cosA)²

=>(-tanA)²

=>tan²A.

All are equal.

Hence proved.

Similar questions