Math, asked by tanmayrp823, 1 year ago

1+tan²A/1+cot²A=tan²A. Show that ?

Answers

Answered by TTG003
0
plz complete the question ...
Answered by nain31
2
 \huge {ANSWER }

✳TO PROVE ✳

 \frac{1+{tan }^{2}A}{1+{cot}^{2}A} = {tan}^{2}A

Taking left hand side,

 \frac{1+{tan }^{2}A}{1+{cot}^{2}A}

 {Since}

1+{tan }^{2}A ={sec}^{2}A

 1+{cot }^{2}A ={cosec}^{2}

 \frac{{sec }^{2}A}{{cosec}^{2}A}

 {Since,}

 {sec}^{2}A = \frac{1}{{cos}^{2}}

 {cosec}^{2}= \frac{1}{{sin}^{2}A}

 \frac{1}{{cos}^{2}A} ÷ \frac{1}{{sin}^{2}A}

 \frac{1}{{cos}^{2}A} \times \frac{{sin}^{2}A}{1}

 \frac{{sin}^{2}A} {{cos}^{2}A}

 {Since,}

\frac{sinA}{cosA} = tanA

Therefore,

 \frac{{sin}^{2}A} {{cos}^{2}A} = {tan}^{2}A

◼HENCE PROVED
Similar questions