Math, asked by ayemikunfayo, 10 months ago

√[(1+tan²A)/(1+cot²A)]=tanA

Answers

Answered by suchipambhar18
1

Step-by-step explanation:

L.H.S. :

= root[(1 + tan^2 A)/(1 + cot^2 A)]

= root[sec^2 A / cosec^2 A]

= root[sin^2 A/cos^2 A]

=sin A/cos A

=tan A == R.H.S.

Please mark as brainliest...

Answered by Anonymous
2

Answer:

 \sqrt{ \frac{1 + tan^{2}x }{1 + cot ^{2} x} }  = tanx \\   \\  \\  \\  =  >  \sqrt{ \frac{ \frac{cos^{2}x +  {sin}^{2}x  }{ {cos}^{2} x} }{ \frac{ {sin}^{2}x +  {cos}^{2}x  }{sin^{2}x } } }  =  \sqrt{ \frac{ {sin}^{2}x }{ {cos}^{2} x} }  =  \frac{sinx}{cosx}  = tanx \:  \:  \: proved \\  \\  \\  \\  \\ hear \:  \: let \: i \: \:  a = x

I hope you are understand.....

please mark me brainlist ✔️

Similar questions