1-tan²A/cot²A-1 = tan²A
Pls help
Answers
Answered by
18
Hey friend
Here is your answer
TO PROVE:
(1-tan²A) / (cot²A-1)=tan²A
PROOF :
LHS:
=(1-tan²A) / (cot²A-1)
=[1-(sin²A/cos²A)] / [(cos²A/sin²A)-1]
=[(cos²A-sin²A)/cos²A]÷[(cos²A-sin²A)/sin²A]
[CANCELLING cos²A-sin²A from both the numerator and denominator ]
=(1/cos²A)÷(1/sin²A)
=sin²A/cos²A
=tan²A
=RHS
================================
HOPE THIS HELPS YOU ☺
Here is your answer
TO PROVE:
(1-tan²A) / (cot²A-1)=tan²A
PROOF :
LHS:
=(1-tan²A) / (cot²A-1)
=[1-(sin²A/cos²A)] / [(cos²A/sin²A)-1]
=[(cos²A-sin²A)/cos²A]÷[(cos²A-sin²A)/sin²A]
[CANCELLING cos²A-sin²A from both the numerator and denominator ]
=(1/cos²A)÷(1/sin²A)
=sin²A/cos²A
=tan²A
=RHS
================================
HOPE THIS HELPS YOU ☺
Answered by
4
Step-by-step explanation:
hope it helped you thanks ok bye please follow me
Attachments:

Similar questions