Math, asked by trishay434, 3 months ago

1+tan²A upon 1+secA = secA
prove
trignometry identities
pls solve step by step ​

Answers

Answered by Anonymous
5

Solution:

ㅤㅤㅤㅤㅤ

Here in this question use appropriate trigonometry identities and solve it. In this case we will use trigonometry identities [ tan² A = sec² A - 1 ]. In this type of problems we will modify L.H.S to R.H.S which has to be proved.

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

L.H.S

  \sf = 1 +  \dfrac{ {\tan}^{2} A}{1 +  \sec A }

ㅤㅤㅤㅤㅤ

  • Use trigonometry Identity

➛ tan² A = sec² A - 1

 \\  \sf = 1 +  \dfrac{ {({\sec}^{2} A - 1) }}{1 +  \sec A }

ㅤㅤㅤㅤㅤ

  • Use identity

➛ a² - b² = ( a + b ) ( a - b )

\\  \sf = 1 +  \dfrac{ {(\sec A - 1) (\sec A  +  1)}}{1 +  \sec A }

 \\  \sf = 1 +  \dfrac{ { (\sec A - 1)  \cancel{(\sec A  +  1)}}}{ \cancel{1 +  \sec A}}

  \\  \sf = 1 +  \sin A - 1

  \\  \sf =  \sec A

= R.H.S

ㅤㅤㅤㅤㅤ

L.H.S = R.HS

ㅤㅤㅤㅤㅤ

HENCE PROVED!!

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Some more trigonometry identities:

ㅤㅤㅤㅤㅤ

  • sin² θ + cos² θ = 1
  • sin² θ = 1 - cos² θ

ㅤㅤㅤㅤㅤ

  • 1 + tan² θ = sec² θ
  • tan² θ = sec² θ - 1

ㅤㅤㅤㅤㅤ

  • sec² A - tan² A = 1

ㅤㅤㅤㅤㅤ

  • cosec² A - cot² A = 1

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Similar questions