Math, asked by sankaracharya68421, 11 months ago

1-tan2theta/cot2theta-1=tan2theta

Answers

Answered by anshi60
6

\huge{\bold{ Question:-}}

To prove

 \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2} \theta - 1 }  =  {tan}^{2}  \theta \\  \\ {\purple{\boxed{\large{\bold{trigonometry \: identies \: used}}}}} \\  \\  \frac{ {sin}^{2} \theta }{ {cos}^{2} \theta }  =  {tan}^{2}  \theta \\  \\  \frac{ {cos }^{2}  \theta}{ {sin}^{2} \theta }  =  {cot}^{2}  \theta \\  \\ \mid{\green{\underline{\red{\mathbb{Taking \: LHS}}}}} \\  \\   \frac{1 -  {tan}^{2}  \theta}{ {cot}^{2} \theta  - 1}  \\  \\   \implies  \frac{1 -  \frac{ {sin}^{2} \theta }{ {cos}^{2}  \theta} }{ \frac{ {cos}^{2}  \theta}{ {sin}^{2}  \theta}  - 1}  \\  \\   \implies \:   \frac{ \frac{ {cos}^{2} \theta -  {sin}^{2}  \theta }{ {cos}^{2} \theta } }{ \frac{ {cos}^{2} \theta -  {sin}^{2}   \theta}{ {sin}^{2} \theta } }  \\  \\  \implies \frac{ {cos}^{2}  \theta -  {sin}^{2}  \theta}{ {cos}^{2} \theta }  \times  \frac{ {sin}^{2} \theta }{ {cos}^{2}  \theta -  {sin}^{2} \theta }  \\  \\  \implies \frac{ {sin}^{2}  \theta}{ {cos}^{2}  \theta}  \\  \\  \implies {tan}^{2}  \theta \:  = RHS \\  \\ {\blue{\boxed{\large{\bold{LHS \:  = RHS}}}}} \\  \\ \huge{\bold{Hence \:  proved}}

Hope its helpful ❤️

Similar questions