(1+tan²x)/1+sin²x+cos²x = 2sinx+cosx
Answers
Answered by
2
What is (1-sin²x) (1+tan²x) equal to?
We know that,
sin²x + cos²x = 1 ( eq1 )
1-sin²x = sin²x + cos²x - sin²x = cos²x
1-sin²x = cos²x
And,
sec²x - tan²x = 1 (eq2)
1+tan²x = sec²x - tan²x + tan²x = sec²x
1+tan²x = sec²x
NOW,
(1-sin²x) (1+tan²x) = cos²x sec²x
[Since , cos²x = 1/sec²x]
(1/sec²x )(sec²x ) =1
Clearly,
(1-sin²x) (1+tan²x) = 1
OR
Fact:- sin²x+cos²x=1; tanx=sinx/cosx
(1-sin²x) (1+tan²x)=(cos²x) (1+sin²x/cos²x)
=(cos²x) ((cos²x+sin²x)/(cos²x))
=(cos²x) (1/(cos²x)) =(cos²x)/(cos²x) =1
Thus, (1-sin²x) (1+tan²x)=1
Similar questions