Math, asked by gopisairamgopi5102, 10 months ago

1-tan⁴theta by 1+tan⁴theta =cos theta+sin theta by cos theta - sin theta

Answers

Answered by samarsparsh18
0

Answer:

Bhai sure nhi h

Please mark me as brainlist

Attachments:
Answered by harendrachoubay
1

\dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}, proved.

Step-by-step explanation:

Prove that,

\dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}

L.H.S.=\dfrac{1-\tan^4 \theta}{1+\tan^4 \theta}

=\dfrac{1-\dfrac{\sin^4 \theta}{\cos^4 \theta}}{1+\dfrac{\sin^4 \theta}{\cos^4 \theta}}

=\dfrac{\cos^4 \theta-\sin^4 \theta}{\cos^4 \theta+\sin^4 \theta}

=\dfrac{(\cos^2 \theta)^2-(\sin^2 \theta)^2}{(\cos^2 \theta)^2+(\sin^2 \theta)^2}

=\dfrac{(\cos^2 \theta+\sin^2 \theta)(\cos^2 \theta-\sin^2 \theta)}{(\cos^2 \theta)^2+(\sin^2 \theta)^2}

Using the identity,

a^{2}-b^{2}=(a+b)(a-b)

=\dfrac{(1)(\cos^2 \theta-\sin^2 \theta)}{(\cos^2 \theta+\sin^2 \theta)^2-2\cos^2 \theta.\sin^2 \theta}

Using the trigonometric identity,

\sin^2 \theta+\cos^2 \theta=1

=\dfrac{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}{(1)^2-2\cos^2 \theta.\sin^2 \theta}

=\dfrac{1+\sin 2\theta}{\cos 2\theta}

R.H.S.=\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}

=\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\times \dfrac{\cos \theta+\sin \theta}{\cos \theta+\sin \theta}

=\dfrac{(\cos \theta+\sin \theta)^2}{\cos^2 \theta-\sin^2 \theta}

=\dfrac{\cos^2 \theta+\sin^2 \theta+2\sin \theta\cos \theta}{\cos^2 \theta-\sin^2 \theta}

=\dfrac{1+\sin 2\theta}{\cos 2\theta}

Hence, \dfrac{1-\tan^4 \theta}{1+\tan^4 \theta} =\dfrac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}, proved.

Similar questions