Math, asked by Abhirup1111, 1 year ago

(1-tanA÷1-cotA)^2 = tan^2A

Answers

Answered by nirnayak
38
(1-tanA)square / (1-cotA) square
(1-tanA) square / [(tanA - 1)/ tanA)] square
(1-tanA) square / [(tanA - 1)sq / tan sq A]
(1-tanA)sq / [(1-tanA) sq / tan sq A]
Tan sq A
Answered by mysticd
76

Solution:

LHS = \left(\frac{1-tanA}{1-cotA}\right)^{2}

=\left(\frac{1-tanA}{1-\frac{1}{tanA}}\right)^{2} /* cotA =1/tanA */

=\left(\frac{1-tanA}{\frac{(tanA-1)}{tanA}}\right)^{2}

=\left(\frac{tanA(1-tanA)}{-(1-tanA)}\right)^{2}

/* After cancellation , we get

=(-tanA)^{2}

=tan^{2}A

= $RHS$

Therefore,

\left(\frac{1-tanA}{1-cotA}\right)^{2}=tan^{2}A

••••

Similar questions