Math, asked by gsafal22, 4 months ago

1÷tanA - 1÷tan2A = cosec2A​

Answers

Answered by Anonymous
1

Step-by-step explanation:

1

tan2A

1

=csc2A

L.H.S. = \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A }

tanA

1

tan2A

1

Using the trigonometric identity,

\tan 2A = \dfrac{2\tan A}{1-\tan^2 A}tan2A=

1−tan

2

A

2tanA

= \dfrac{1}{\tan A } -\dfrac{1}{\dfrac{2\tan A}{1-\tan^2 A}}

tanA

1

1−tan

2

A

2tanA

1

=\dfrac{1}{\tan A } -\dfrac{1-\tan^2 A}{2\tan A}=

tanA

1

2tanA

1−tan

2

A

Taking LCM of denominator part, we get

=\dfrac{2-1+\tan^2 A}{2\tan A}=

2tanA

2−1+tan

2

A

=\dfrac{1+\tan^2 A}{2\tan A}=

2tanA

1+tan

2

A

=\dfrac{1}{\dfrac{2\tan A}{1+\tan^2 A} }=

1+tan

2

A

2tanA

1

Using the trigonometric identity,

\sin 2A=\dfrac{2\tan A}{1+\tan^2 A}sin2A=

1+tan

2

A

2tanA

=\dfrac{1}{\sin 2A}=

sin2A

1

= \csc 2Acsc2A

= R.H.S., proved.

∴ \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A

tanA

1

tan2A

1

=csc2A , proved

Answered by TheWonderWall
1

\large\sf\underline{Question}

  • \sf\:\frac{1}{tan(A)}-\frac{1}{tan(2A)}= Cosec(2A)

‎⠀⠀━━━━━ ★ ━━━━━

\large\sf\underline{Solution}

\sf➪\:\frac{1}{tan(A)}-\frac{1}{tan(2A)}

\tt\red{tan(2A)=\frac{2tan(A)}{1+tan^{2}(A)}}

\sf➪\:\frac{1}{tan(A)}-\frac{1 \div 2 tan (A) }{1+tan^{2}(A)}

\sf➪\:\frac{1}{tan(A)}-\frac{1+tan^{2}(A)}{2tan(A)}

\sf➪\:\frac{2-1+tan^{2}(A)}{2tan(A)}

\sf➪\:\frac{1+tan^{2}(A)}{2tan(A)}

\tt\red{sin(2A)=\frac{2tan(A)}{1+tan^{2}(A)}}

\sf➪\:\frac{1}{sin(2A)}

\tt\red{Cosec(A)=\frac{1}{sin(A)}}

\sf➪\:Cosec(2A)\:[proved]

‎⠀⠀━━━━━ ★ ━━━━━

\fbox\pink{S}\fbox\green{O}\fbox\pink{M}\fbox\green{E}\fbox\pink{F}\fbox\green{O}\fbox\pink{R}\fbox\green{M}\fbox\pink{U}\fbox\green{L}\fbox\pink{A}\red{࿐}

  • \sf\:sin^{2}θ+cos^{2}θ=1

  • \sf\:cosec^{2}θ-cot^{2}θ=1

  • \sf\:sec^{2}θ-tan^{2}θ=1

  • \sf\:cos2θ=2cos^{2}θ-1

  • \sf\:sin2θ=2sinθ cosθ

Thnku ❣

Similar questions