Math, asked by tamannapriyadarshini, 10 months ago

1-tanA /1 +tanA =?
Solve the problem ​

Answers

Answered by pikachu231
5

Step-by-step explanation:

simplify the above equation accordingly and use accurate identities and u'll get the answer

Attachments:
Answered by sharmaaashutosh169
3

Concept

The formula will use to solve the problem

1. (a+b)^2=a^2+b^2+2ab

2. tanA=\frac{sinA}{cosA}

3. sin^2A+cos^2A=1

Given

The expression is \frac{1-tanA}{1 +tanA}.

Find

We have to solve the problem.

Solution

Simplify the given expression

\frac{1-\tan A}{1+\tan A} =\frac{1-\frac{\sin A}{\cos A}}{1+\frac{\sin A}{\cos A}}

           = \frac{\frac{cosA-sinA}{cosA}}{\frac{cosA+sinA}{cosA}}

          =\frac{cosA-sinA}{cosA+sinA}

Multiply cosA+sinA in numbeneter and denomenator

\frac{cosA-sinA}{cosA+sinA}=\frac{(cosA-sinA)(cosA+sinA)}{(cosA+sinA)(cosA+sinA)}

                =\frac{cos^2A-sin^2A}{(cosA+sinA)^2}

                =\frac{cos^2A-sin^2A}{cos^2A+sin^2A+2cosAsinA}

                =\frac{cos2A}{1+sin2A}

Hence the final value is \frac{cos2A}{1+sin2A}.

Similar questions