(1 - tanA )²+ (1 - CotA) ²=(sec A - cosec A) ²
Attachments:
Answers
Answered by
2
Taking LHS,
1-2tan A + tan²A + 1 - 2CotA +Cot²A
{(a-b) ²=a²-2ab+b²}
Sec²A + cosec² A -2(tan A + cot A)
{1+tan²A = sec²A & 1 +Cot²A =cosec²A}
Sec²A + cosec² A -2 (sinA/cosA +cos A / sinA)
Sec²A + cosec² A -2 (sin²A+cos²A) /sinAcosA
Sec²A + cosec² A -2 (1)/(sinA cos A)
Sec²A + cosec² A -2 (cosecA) (secA)
(SecA - cosecA) ²
Hence, proved
Hope it helps!
Similar questions