Math, asked by johnpaulfernandes02, 1 month ago

(1+tanA)² + (1+cotA)² = (secA+cosecA)²​

Answers

Answered by ravi2303kumar
0

Step-by-step explanation:

To prove : (1+tanA)² + (1+cotA)² = (secA+cosecA)²​

take LHS

= (1+tanA)² + (1+cotA)²

= 1+2tanA+tan²A + 1 + 2cotA + cot²A

= sec²A-tan²A+tan²A+cosec²A-cot²A+cot²A + 2(tanA+cotA)

= sec²A+cosec²A+2( (sinA/cosA) + (cosA/sinA) )

= sec²A+cosec²A+2( sin²A+cos²A)/ (sinA.cosA)

= sec²A+cosec²A+2( 1/ sinA).(1/cosA)

= sec²A+cosec²A+2secA.cosecA

= (secA+cosecA)²

= RHS

=> LHS = RHS

Hence proved

Answered by bhatthritik1
1

Answer:

see the photo just solved now

hope it helps

Attachments:
Similar questions