1+tanA/2/1-tan A/2=secA+tanA
Answers
Answered by
7
1+tanATanA/2=secA ,how to prove it?
Answers
LHS
= 1 + [ tan A. tan (A/2) ]
= 1 + [ sin A. sin (A/2) / cos A. cos (A/2) ]
= [ cos A. cos (A/2) + sin A. sin (A/2) ] / [ cos A. cos (A/2) ]
= [ cos ( A - (A/2) ) ] / [ cos A. cos (A/2) ]
= [ cos (A/2) ] / [ cos A. cos (A/2) ]
= 1 / ( cos A )
= sec A ............... (1)
... RHS
= [ tan A. cot (A/2) ] - 1
= [ sin A. cos (A/2) / cos A. sin (A/2) ] - 1
= { [ sin A. cos (A/2) - cos A. sin (A/2) ] / [ cos A. sin (A/2) ] }
= { [ sin ( A - A/2 ) ] / [ cos A. sin (A/2) ] }
= [ sin (A/2) ] / [ cos A. sin (A/2) ]
= 1 / ( cos A )
= sec A
= LHS ...... from (1) ...........
Answers
LHS
= 1 + [ tan A. tan (A/2) ]
= 1 + [ sin A. sin (A/2) / cos A. cos (A/2) ]
= [ cos A. cos (A/2) + sin A. sin (A/2) ] / [ cos A. cos (A/2) ]
= [ cos ( A - (A/2) ) ] / [ cos A. cos (A/2) ]
= [ cos (A/2) ] / [ cos A. cos (A/2) ]
= 1 / ( cos A )
= sec A ............... (1)
... RHS
= [ tan A. cot (A/2) ] - 1
= [ sin A. cos (A/2) / cos A. sin (A/2) ] - 1
= { [ sin A. cos (A/2) - cos A. sin (A/2) ] / [ cos A. sin (A/2) ] }
= { [ sin ( A - A/2 ) ] / [ cos A. sin (A/2) ] }
= [ sin (A/2) ] / [ cos A. sin (A/2) ]
= 1 / ( cos A )
= sec A
= LHS ...... from (1) ...........
Answered by
10
Answer:
secA+tanA
=1/cosA+sinA/cosA
=1+sinA/cosA
=1+2tanA/2/1-tan'2A/2/1-tan'2A/2/1+tan'2A/2
=1+tan'2A/2+2tanA/2/1-tanA/2.1+tanA/2
=1+tanA/2/1+tanA/2
Similar questions