Math, asked by rahulkumarsingh6816, 9 months ago

(1+tana)2+(1-tana)2=2sec2a

Answers

Answered by abhi569
2

Answer:

2 sec^2 A

Step-by-step explanation:

    Using 1+ tan^2 A = sec^2 A

⇒ ( 1 + tanA )^2 + ( 1 - tanA )^2

⇒ [ ( 1 )^2 + ( tanA )^2 + 2( tanA )( 1 ) ] + [ ( 1 )^2 + ( tanA )^2 - 2( tanA )( 1 ) ]

⇒ [ 1 + tan^2 A + 2tanA ] + [ 1 + tan^2 A - 2tanA ]

⇒ 1 + tan^2 A + 2tanA + 1 + tan^2A - 2tanA

⇒ 1 + 1 + tan^2 A + tan^2 A

⇒ 2( 1 + tan^2 A )

⇒ 2( sec^2 A )

⇒ 2sec^2 A    

       Proved.

Answered by Anonymous
8

Answer:

\huge\boxed{\fcolorbox{blue}{orange}{HELLO\:MATE}}

Step-by-step explanation:

GIVEN:

 (1+tanA)^{2} + (1-tanA)^{2}=2sec^{2}A

PROOF:

 (1+tanA)^{2} + (1-tanA)^{2}=2sec^{2}A

LHS:

= (1+tanA)^{2} + (1-tanA)^{2}

= 1 + tan^{2}A +2tanA +1+tan^{2}A -2tanA

\large\green{\boxed{ (a+b) ^{2}=a^{2}+b^{2}+2ab}}

\large\green{\boxed{ (a-b) ^{2}=a^{2}+b^{2}-2ab}}

= 1 + tan^{2}A  +1+tan^{2}A

= 2 + 2tan^{2}A

=2(1+tan^{2}A)

\large\red{\boxed{ sec^{2}A=1+tan^{2}A}}

On substituting this value in above expression,we have:

=2sec^{2}A

=LHS

\huge\purple{\boxed{HENCE\: LHS= RHS}}

Similar questions