(1+tana)2+(1-tana)2=2sec2a
Answers
Answered by
2
Answer:
2 sec^2 A
Step-by-step explanation:
Using 1+ tan^2 A = sec^2 A
⇒ ( 1 + tanA )^2 + ( 1 - tanA )^2
⇒ [ ( 1 )^2 + ( tanA )^2 + 2( tanA )( 1 ) ] + [ ( 1 )^2 + ( tanA )^2 - 2( tanA )( 1 ) ]
⇒ [ 1 + tan^2 A + 2tanA ] + [ 1 + tan^2 A - 2tanA ]
⇒ 1 + tan^2 A + 2tanA + 1 + tan^2A - 2tanA
⇒ 1 + 1 + tan^2 A + tan^2 A
⇒ 2( 1 + tan^2 A )
⇒ 2( sec^2 A )
⇒ 2sec^2 A
Proved.
Answered by
8
Answer:
Step-by-step explanation:
GIVEN:
PROOF:
LHS:
=
=
=
=
=
On substituting this value in above expression,we have:
=
=LHS
Similar questions