Math, asked by yogisrinivas5441, 9 months ago

1. tanA+cotA=secAcosecA [prove that]

Answers

Answered by Anonymous
2

Given,

TO PROVE :

 \tan(a)  +  \cot(a)  =  \sec(a)  \csc(a)

LHS :

 \tan(a)  +  \cot(a)  =  \dfrac{ \sin(a) }{ \cos(a) }  +  \dfrac{ \cos(a) }{ \sin(a) }

 \implies \:  \dfrac{ { \sin(a)}^{2}  +  { \cos(a) }^{2} }{ \sin(a)  \cos(a) }

we know that,

 { \sin(a) }^{2}  +  { \cos(a) }^{2}  = 1

 \implies \:  \dfrac{1}{ \sin(a) \cos(a)  }

we know that,

 \dfrac{1}{ \sin(a) }  =  \csc(a)

 \dfrac{1}{ \cos(a) }  =  \sec(a)

 \implies \:  \dfrac{1}{ \sin(a) \cos(a)  }  =  \sec(a)  \times  \csc(a)

LHS = RHS

Hence proved ,

 \tan(a)  +  \cot(a)  =  \sec(a)  \csc(a)

Answered by aashijainvcc
0

Answer:

LHS=sinA/cosA+cosA/sinA

LHS=sin^2A+cos^2A/cosA*sinA

LHS=1/cosA*sinA

LHS=1/cosA*1/sinA

LHS=secA*cosecA=RHS

Similar questions