Math, asked by sanghamitapattnaik56, 6 days ago

(1+tanA+secA)(1+cotA-cosecA)=2​

Answers

Answered by navyasree444
6

Given: (1+tanA+secA)(1+cotA-cosecA) = 2​

To find: Whether LHS = 2

Solution: LHS can be written as:

⇒ (1 + sinA/cosA + 1/cosA)(1 + cosA/sinA - 1/sinA)  

⇒ [(cosA + sinA + 1)/cosA] [(sinA+cosA - 1)/sinA]    

⇒ [(sinA + cosA)^{2} - 1]/sinAcosA    

⇒ (1 + 2sinAcosA - 1) / sinAcosA  

2

LHS = RHS

Answered by NITESH761
26

Step-by-step explanation:

We have,

\rm (1+ \tan A + \sec A )(1+ \cot A -\cosec A)

\rm \bigg( 1+ \dfrac{\sin  A}{\cos A}  + \dfrac{1}{\cos A}  \bigg) \bigg( 1+ \dfrac{\cos A}{\sin A}  -\dfrac{1}{\sin A} \bigg)

\rm \bigg(  \dfrac{\cos A + \sin  A+1}{\cos A} \bigg) \bigg(  \dfrac{\sin A + \cos A- 1}{\sin A}   \bigg)

\rm \bigg(  \dfrac{( \cos A + \sin A )^2 -1^2)}{\cos A \sin A}  \bigg)

\rm \bigg(  \dfrac{\cos ^2 A + \sin ^2 A + 2 \sin A \cos A -1}{\cos A \sin A}  \bigg)

\rm \bigg(  \dfrac{1 + 2 \sin A \cos A -1}{\cos A \sin A}  \bigg)

\rm   \dfrac{2  \:  \: \cancel{\sin A \cos A} }{\cancel{\cos A \sin A}}  = 2

\bf Hence \: Proved

Similar questions