Math, asked by carry2, 6 months ago

(1+ TanA + SecA) (1 + CotA - CosecA)

Answers

Answered by MoodyCloud
8

Solution:-

 \bigstar \sf \: (1 + tan \: A + sec\:A)(1 + cot \: A \:  - cosec \: A)

 \implies \sf \: (1 +  \dfrac{sin \: A}{cos \: A} +  \dfrac{1}{cos \: A})(1 +  \dfrac{cos \: A}{sin \: A} -  \dfrac{1}{sin \: A})

 \implies \sf \:( \dfrac{cos \: A - sin \: A + 1}{cos \:A } )( \dfrac{sin \: A + cos \:A - 1 }{sin \: A})

 \implies \sf  \dfrac{ {(sin \:A + cos \:  A)}^{2} - 1 }{cos\: A \: sin\:A }

  •  \sf {sin}^{2} A +  {cos}^{2} A = 1

 \implies \sf  \dfrac{1 + 2 \: sin \: A \: cos \: A - 1}{cos \:A \: sin \: A }

 \implies \sf 2

Therefore,

 \bigstar \sf \: (1 + tan \: A + sec\:A)(1 + cot \: A \:  - cosec \: A) = 2

Similar questions