(1+tanA+secA)(1+CotA-CosecA)
Answers
Answered by
1
Solution:
Solution:
(1+tanA+secA) (1+cotA-cscA)
= (1+(sinA/cosA)+(1/cosA) (1+(cosA/sinA)-(1/sinA)
= [(cosA+sinA+1)/cosA] [(sinA+cosA-1)/sinA]
= [(cosA+sinA+1) (sinA+cosA-1)]/cosAsinA
= (2cosAsinA+cosA^2A+sin^2A-1)/cosAsinA
= 2cosAsinA/cosAsinA
= 2
Hope this will be helpful.
Solution:
(1+tanA+secA) (1+cotA-cscA)
= (1+(sinA/cosA)+(1/cosA) (1+(cosA/sinA)-(1/sinA)
= [(cosA+sinA+1)/cosA] [(sinA+cosA-1)/sinA]
= [(cosA+sinA+1) (sinA+cosA-1)]/cosAsinA
= (2cosAsinA+cosA^2A+sin^2A-1)/cosAsinA
= 2cosAsinA/cosAsinA
= 2
Hope this will be helpful.
Similar questions