(1+tanA + secA) (1+cotA - cosecA)
Answers
Answered by
3
Hi ,
i ) 1 + tanA + secA
= 1 + ( sinA/cosA ) + ( 1/cosA )
= ( cosA + sinA + 1 )/cosA ---( 1 )
ii ) 1 + cotA - Cosec A
= 1 + ( cosA/sinA ) - ( 1/sinA )
= ( sinA + cosA - 1 )/sinA ---( 2 )
According to the problem given ,
(1+tanA+secA)(1+cotA-cosecA)
= ( 1 ) × ( 2 )
=[(sinA+cosA+1)(sinA+cosA-1)]/(cosAsinA)
= [ ( sinA + cosA )² - 1² ]/( sinAcosA )
= ( sin² A + cos² A + 2sinAcosA -1)/(sinAcosA )
= ( 1 + 2sinAcosA - 1 )/( sinAcosA )
= ( 2sinAcosA )/ ( sinAcosA )
= 2
I hope this helps you.
: )
i ) 1 + tanA + secA
= 1 + ( sinA/cosA ) + ( 1/cosA )
= ( cosA + sinA + 1 )/cosA ---( 1 )
ii ) 1 + cotA - Cosec A
= 1 + ( cosA/sinA ) - ( 1/sinA )
= ( sinA + cosA - 1 )/sinA ---( 2 )
According to the problem given ,
(1+tanA+secA)(1+cotA-cosecA)
= ( 1 ) × ( 2 )
=[(sinA+cosA+1)(sinA+cosA-1)]/(cosAsinA)
= [ ( sinA + cosA )² - 1² ]/( sinAcosA )
= ( sin² A + cos² A + 2sinAcosA -1)/(sinAcosA )
= ( 1 + 2sinAcosA - 1 )/( sinAcosA )
= ( 2sinAcosA )/ ( sinAcosA )
= 2
I hope this helps you.
: )
Answered by
3
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions