Math, asked by abigalbilung20981439, 1 day ago

( 1 + tanA + secA ) ( 1 + cotA - cosecA ) =​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm \: (1 + tanA + secA)(1 + cotA - cosecA) \\

We know,

\boxed{\tt{ tanx =  \frac{sinx}{cosx}}} \\  \\ \boxed{\tt{ cotx =  \frac{cosx}{sinx}}} \\  \\ \boxed{\tt{ secx =  \frac{1}{cosx}}} \\  \\ \boxed{\tt{ cosecx =  \frac{1}{sinx} \: }} \\

So, using these identity, we get

\rm \:  =  \: \bigg(1 + \dfrac{sinA}{cosA} +  \dfrac{1}{cosA}  \bigg)\bigg(1 + \dfrac{cosA}{sinA}  - \dfrac{1}{sinA}  \bigg)  \\

\rm \:  =  \: \bigg(\dfrac{cosA + sinA + 1}{cosA} \bigg)\bigg(\dfrac{sinA + cosA - 1}{sinA}\bigg)  \\

can be further rewritten as

\rm \:  =  \: \bigg(\dfrac{cosA + sinA + 1}{cosA} \bigg)\bigg(\dfrac{cosA + sinA - 1}{sinA}\bigg)  \\

We know

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ {(cosA + sinA)}^{2}  -  {1}^{2} }{cosA \: sinA}

\rm \:  =  \: \dfrac{ {cos}^{2}A +  {sin}^{2}A + 2sinA \: cosA -  1}{cosA \: sinA}

We know,

\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ 1 + 2sinA \: cosA -  1}{cosA \: sinA}

\rm \:  =  \: \dfrac{2sinA \: cosA}{cosA \: sinA}  \\

\rm \:  =  \: 2

Hence,

\boxed{\tt{ \rm \: (1 + tanA + secA)(1 + cotA - cosecA) = 2}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions