Math, asked by kamalammashashi, 22 hours ago

(1+tanA+secA)(1+cotA-cosecA)​

Answers

Answered by Kazoku
136

Given : (1 + tanA + secA)(1 + cotA - cosecA)

Solution :

\implies\mathtt{( \frac{sin \: a}{cos \: a} +  \frac{1}{cos \: a} )( 1 +  \frac{cos \: a}{sin \: a} -  \frac{1}{sin \: a}  ) } \\  \\ \\  \implies\mathtt{( \frac{cos \: a +  sin \: a \:  + 1}{cos \: a}) ( \frac{sin \: a + cos \: a - 1}{sin \: a}) } \\  \\  \\ \implies\mathtt{ \frac{(sin \: a  + cos \: a)^{2} -  {1}^{2}  }{sin \: a \times cos \: a} } \\  \\  \\ \implies\mathtt{  \frac{{sin}^{2} \: a +  {cos}^{2}  \: a + 2sin \: a \times cos \: a - 1}{sin \: a \times cos \: a}  }  \\  \\  \\ \implies\mathtt{ \frac{1 + 2sin \: a \times cos \: a - 1}{sin \: a \times cos \: a} } \\  \\  \\ \implies\mathtt{ \frac{2sin \: a \times cos \: a}{sin \: a \times cos \: a} } \\  \\  \\ \implies\mathtt{2 \: ans}

Similar questions