(1+tanx)^2+(1+cotx)^2
Answers
Answered by
1
(1-tanx )^2 + (1-cotx )^2
= 1-2tanx+tan^2x+1-2cotx+cot^2x
= (1+tan^2x)+(1+cot^2x)-2(tanx+cotx)
We know that;
1+tan^2x = sec^2x
1+cot^2x = cosec^2x
sin^2x+cos^2x = 1
(tanx+cotx)
= sinx/cosx+cosx/sinx
= (sin^2x+cos^2x)/(sinxcosx)
= 1/(sinxcosx)
= secxcosecx
(1-tanx )^2 + (1-cotx )^2
= (1+tan^2x)+(1+cot^2x)-2(tanx+cotx)
= sec^2x-2secxcosecx+cosec^2x
(secx-cosecx)^2 = sec^2x-2secxcosecx+cosec^2x
(1-tanx )^2 + (1-cotx )^2
= (1+tan^2x)+(1+cot^2x)-2(tanx+cotx)
= sec^2x-2secxcosecx+cosec^2x
= (secx-cosecx)^2
Similar questions