Math, asked by navyag3173, 1 year ago

(1-tanx)^2+(1-cotx)^2=(secx-cosecx)^2

Answers

Answered by sahilarora199587
44

(1-tanx)^2+(1- cotx)^2

=(1-2tanx+tan^2x)+(1-2cotx+cot^2x)

=sec^2x+csc^2x-2(tanx+cotx)

=sec^2x+csc^2x-2(sinx/cosx+cosx/sinx)

=sec^2x+csc^2x-2[(sin^2x+cos^2x)/(cosx*sinx)]

=sec^2x+csc^2x-2[1/(cosx*sinx)]

=sec^2x+csc^2x-2[(1/cosx)*(1/sinx)]

=sec^2x+csc^2x-2secx*cscx

=(secx-cscx)^2

Hope it helps ✌❤❤

Don't forget to FOLLOW me and mark as BRAINLIEST ❤✌✌❤

Answered by JeanaShupp
16

The trigonometric identities are:

\sin^2 x+\cos^2x=1

1+\tan^2 x=\sec^2x

1+\cot^2 x=\csc^2x

Explanation:

To prove : (1-\tan x)^2+(1-\cot x)^2=(\sec x-\csc x)^2

Consider LHS : (1-\tan x)^2+(1-\cot x)^2

Using identity : (a-b)^2=a^2+b^2-2ab, we get

1^2+\tan^2 x-2\tan x+1^2+\cot^2 x-2\cot x

=(1+\tan^2 x)-2\tan x+(1+\cot^2 x)-2\cot x

=\sec^2x-2\tan x+\csc^2x -2\cot x

[\because\ 1+\tan^2 x=\sec^2x\ \&\ 1+\cot^2 x=\csc^2x]

=\sec^2x+\csc^2x-2(\tan x -\cot x)

=\sec^2x+\csc^2x-2(\dfrac{\sin x}{\cos x} -\dfrac{\cos x}{\sin x})

=\sec^2x+\csc^2x-2(\dfrac{\sin^2 x+\cos^2x}{\sin x\cos x})

=\sec^2x+\csc^2x-2(\dfrac{1}{\sin x\cos x})

[\because\ \sin^2 x+\cos^2x=1]

=\sec^2x+\csc^2x-2(\csc x\sec x)

=(\sec x-\csc x)^2 → RHS

Hence, Proved .

# Learn more :

(1+cotx - cosecx)(1+tanx+secx)= 2

https://brainly.in/question/11634039

Similar questions