(1-tanx)^2+(1-cotx)^2=(secx-cosecx)^2
Answers
Answered by
44
(1-tanx)^2+(1- cotx)^2
=(1-2tanx+tan^2x)+(1-2cotx+cot^2x)
=sec^2x+csc^2x-2(tanx+cotx)
=sec^2x+csc^2x-2(sinx/cosx+cosx/sinx)
=sec^2x+csc^2x-2[(sin^2x+cos^2x)/(cosx*sinx)]
=sec^2x+csc^2x-2[1/(cosx*sinx)]
=sec^2x+csc^2x-2[(1/cosx)*(1/sinx)]
=sec^2x+csc^2x-2secx*cscx
=(secx-cscx)^2
Hope it helps ✌❤❤
Don't forget to FOLLOW me and mark as BRAINLIEST ❤✌✌❤
Answered by
16
The trigonometric identities are:
Explanation:
To prove :
Consider LHS :
Using identity : , we get
[]
[]
→ RHS
Hence, Proved .
# Learn more :
(1+cotx - cosecx)(1+tanx+secx)= 2
https://brainly.in/question/11634039
Similar questions
French,
6 months ago
Physics,
6 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago