Math, asked by aounmd74, 11 months ago

(1) Test whether the function f(x) = (2x + 3)³/² is differentiable at x = -3/2

Answers

Answered by friendmahi89
0

Given,

f(x)= (2x+3)^{\frac{3}{2} }                              and x=  \frac{-3}{2}

Now, we know that a function is differentiable at a point =a if and only if

Right hand derivative(RHD) = Left hand derivative(LHD) at that point.

So,

RHD= \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}

      = \lim_{h \to \ 0} \frac{f(\frac{-3}{2} +h)-f(\frac{-3}{2} )}{h}

     = \lim_{h \to \ 0} \frac{(2h)^{\frac{3}{2} } - 0}{h}

     = \lim_{h \to \ 0} 2^{\frac{3}{2} } \sqrt{h}

     = 0

and

LHD= \lim_{h \to 0} \frac{f(a-h)-f(a)}{-h}

      = \lim_{h \to \ 0} \frac{f(\frac{-3}{2} -h)-f(\frac{-3}{2} )}{-h}

      = \lim_{h \to \ 0} \frac{(-2h)^{\frac{3}{2} } - 0}{-h}

      = \lim_{h \to \ 0} -(-2)^{\frac{3}{2} } \sqrt{h}

      = 0.

Since, RHD= LHD

then the given function is differentiable at x=  \frac{-3}{2}.

Answered by ushmagaur
5

Answer:

Yes, the function f(x)=(2x+3)^{3/2} is differentiable at x=\frac{-3}{2}.

Step-by-step explanation:

Consider the function as follows:

f(x)=(2x+3)^{3/2}

Differentiate with respect to x.

f'(x)=\frac{3}{2}(2x+3)^{1/2}.2

f'(x)=3(2x+3)^{1/2} ...... (1)

Substitute the value \frac{-3}{2} for x in the equation (1) as follows:

f'(\frac{-3}{2} )=3(2(\frac{-3}{2} )+3)^{1/2}

f'(\frac{-3}{2} )=3(-3 +3)^{1/2}

f'(\frac{-3}{2} )=3(0)^{1/2}\\

f'(\frac{-3}{2} )=0

The value of f(x) at x=\frac{-3}{2} exists and is finite.

Therefore, the function f(x)=(2x+3)^{3/2} is differentiable at x=\frac{-3}{2}.

#SPJ3

Similar questions