Math, asked by okoriedennis610, 5 hours ago

1
 \div a + b + x = 1 \div a + 1  \div b + 1 \div x
calculate using factorization method.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{1}{a + b + x}  = \dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{x}

can be rewritten as

\rm :\longmapsto\:\dfrac{1}{a + b + x}   - \dfrac{1}{x}  =  \dfrac{1}{a}  + \dfrac{1}{b}

\rm :\longmapsto\:\dfrac{x - (a + b + x)}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{\cancel{x} - a  -  b  - \cancel x}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{ - a  -  b}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{ - (a  +  b)}{(a + b + x)x}  =  \dfrac{a + b}{ab}

\rm :\longmapsto\:\dfrac{ -1}{(a + b + x)x}  =  \dfrac{1}{ab}

\rm :\longmapsto\:x(a + b + x) =  - ab

\rm :\longmapsto\: ax + bx + {x}^{2} =  - ab

\rm :\longmapsto\: ax + bx + {x}^{2} +  ab = 0

\rm :\longmapsto\:  {x}^{2} +  ax + bx +  ab = 0

\rm :\longmapsto\:x(x + a) + b(x + a) = 0

\rm :\longmapsto\:(x + a)(x + b) = 0

\bf\implies \:x \:  =  \:  -  \: a \:  \: \:  \:  or \:  \:  \:  \: x \:  =  \:  -  \: b

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by EmperorSoul
11

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{1}{a + b + x}  = \dfrac{1}{a}  + \dfrac{1}{b}  + \dfrac{1}{x}

can be rewritten as

\rm :\longmapsto\:\dfrac{1}{a + b + x}   - \dfrac{1}{x}  =  \dfrac{1}{a}  + \dfrac{1}{b}

\rm :\longmapsto\:\dfrac{x - (a + b + x)}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{\cancel{x} - a  -  b  - \cancel x}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{ - a  -  b}{(a + b + x)x}  =  \dfrac{b + a}{ab}

\rm :\longmapsto\:\dfrac{ - (a  +  b)}{(a + b + x)x}  =  \dfrac{a + b}{ab}

\rm :\longmapsto\:\dfrac{ -1}{(a + b + x)x}  =  \dfrac{1}{ab}

\rm :\longmapsto\:x(a + b + x) =  - ab

\rm :\longmapsto\: ax + bx + {x}^{2} =  - ab

\rm :\longmapsto\: ax + bx + {x}^{2} +  ab = 0

\rm :\longmapsto\:  {x}^{2} +  ax + bx +  ab = 0

\rm :\longmapsto\:x(x + a) + b(x + a) = 0

\rm :\longmapsto\:(x + a)(x + b) = 0

\bf\implies \:x \:  =  \:  -  \: a \:  \: \:  \:  or \:  \:  \:  \: x \:  =  \:  -  \: b

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions