Math, asked by PopularAnswerer01, 3 months ago

1. \sf \: if \:  \: \dfrac{3 + 5 + 7 + . . . . + n \: terms }{5 + 8 + 11. . . . + 10 \: terms}  = 7.then \: the \: value \: of \: n = ?

2. \sf \: if \:  \:  \:  \dfrac{ a + bx}{a - bx}  =  \dfrac{b + cx}{b - cx}  =  \dfrac{c + dx}{c - dx} \: .then \: a , b , c , d \: are \: in

Note:-

1. Irrelevant answers will be reported.

2. Answer will detailed explanation.

Answers

Answered by shadowsabers03
81

1. Consider the arithmetic series,

\longrightarrow S_1=3+5+7+\,\dots\,n\ terms

The n'th term of this series is,

\longrightarrow a_n=3+(n-1)(5-3)

\longrightarrow a_n=3+2(n-1)

\longrightarrow a_n=2n+1

So,

\longrightarrow S_1=3+5+7+\,\dots\,+(2n+1)

\longrightarrow S_1=\dfrac{n}{2}\left[3+(2n+1)\right]

\longrightarrow S_1=n^2+2n

Consider the arithmetic series,

\longrightarrow S_1=5+8+11+\,\dots\,10\ terms

The n'th term of this series is,

\longrightarrow a_n=5+(n-1)(8-5)

\longrightarrow a_n=5+3(n-1)

\longrightarrow a_n=3n+2

Then 10th term is,

\longrightarrow a_{10}=3\times10+2

\longrightarrow a_{10}=32

So,

\longrightarrow S_1=5+8+11+\,\dots\,+32

\longrightarrow S_1=\dfrac{10}{2}\left[5+32\right]

\longrightarrow S_1=185

Now,

\longrightarrow\dfrac{3+5+7+\,\dots\,n\ terms}{5+8+11+\,\dots\,10\ terms}=7

\longrightarrow\dfrac{n^2+2n}{185}=7

\longrightarrow n^2+2n-1295=0

\longrightarrow n^2+37n-35n-1295=0

\longrightarrow n(n+37)-35(n+37)=0

\longrightarrow(n+37)(n-35)=0

Since n>0,

\longrightarrow\underline{\underline{n=35}}

2. Consider,

\longrightarrow\dfrac{a+bx}{a-bx}=\dfrac{b+cx}{b-cx}

By rule of componendo and dividendo, we get,

\longrightarrow\dfrac{bx}{a}=\dfrac{cx}{b}

\longrightarrow\dfrac{b}{a}=\dfrac{c}{b}

Similarly, consider,

\longrightarrow\dfrac{b+cx}{b-cx}=\dfrac{c+dx}{c-dx}

Then we get,

\longrightarrow\dfrac{c}{b}=\dfrac{d}{c}

Now,

\longrightarrow\dfrac{b}{a}=\dfrac{c}{b}=\dfrac{d}{c}

This implies a,\ b,\ c,\ d are in Geometric Progression.

Similar questions