Math, asked by tanwartaniya, 7 months ago

1/
 \sqrt{3 -  \sqrt{2} }

Answers

Answered by Anonymous
7

 \huge \purple {\sf {\frac{1}{ \sqrt{3} -  \sqrt{2} }} }

 \huge \purple {\sf {=  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }}}

  \huge \purple {\sf {= \frac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}}}

 \huge \purple {\sf {=  \frac{ \sqrt{3} +  \sqrt{2}  }{1}}}

 \huge \purple {\sf {= { \sqrt{3}  +  \sqrt{2}  }}}

Answered by fingers33
5

Answer:

   \huge\sf{ \red{ \underline{{given \ \: : }}}}

 \huge\bf \frac{1}{3 -  \sqrt{2} }

 \huge{ \sf{ \red{ \underline{to \: find}}}}

 \bf the \: rationaling\:factor

 \huge \sf \red{ \underline{{solutio n\ \: : }}}

\huge \bf{ \boxed{ \frac{1}{3 -  \sqrt{2} } }}

\huge \to \sf \frac{1 \times }{3 -  \sqrt{2}  \times }  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }

 \huge\to \sf \frac{3 +  \sqrt{2} }{ {3}^{2} -  { \sqrt{2} }^{2}  }

 \huge\sf \to \frac{3 +  \sqrt{2} }{9 - 2}

 { \boxed{\red \to{ \sf \frac{3 +  \sqrt{2} }{7} }}}

_________________________

Identity used:-

 \sf(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

Explanation:-

  • To cancel a root term we need to square it.

  • By using this identity we can square both the values.

_________________________

Similar questions