Math, asked by hridhya32, 1 year ago

1) the 16 term of an ap is 5 times its third term if 10 term is 41 then find the sum of first 15 terms
2)find 60th term of an ap 8 10 12 if it has a total of 60 terms and find the sum of its last 10 them
3)in an ap if S5 Plus S7 equal to 167 and S10 equal to 235 then find the AP SN denotes the sum of first n terms
answer the three questions and earn 20 points

Answers

Answered by vibdibs734
0

1)  HI....

16th term=5(3rd term)                        a₁₀=a+9d

a+15d=5(a+2d)                                   41=5d/4+9d

a+15d=5a+10d                               41=41d/4

15d-10d=5a-a                               41*4/41=d

5d=4a                                         =>d=4

a=5d/4                               a=5(4)/4  =>a=5


Sn=n/2[2a+(n-1)d]

S₁₅=15/2[2(5)+(14)4]

     =15/2[10+56]

     =15/2[66]

 S₁₅=495.

2) Sn=a+n(n-10)d             d=a₂-a₁=10-8=2

   S₆₀=8+(59)2

        =8+118

S₆₀=126.

To find the sum of the last 10 term , i just found out the 50th term(because 60-10=50) and substituted it in the formula Sn=n/2(a+l).

a₅₀=a+49d

    =8+(49)2

  =8+98

a₅₀=106

S(last 10 terms)=n/2[a+l}

                        =10/2[106+126]

                        =5[232]

.: S(last 10 terms)=1160.

3) S₅+S₇=167     Using the formula Sn=n/2[2a+(n-1)d]

We get ,   5/2[2a+4d]+{7/2[2a+6d]}=167

          5a+10d+7a+21d=167

   12a+31d=167   (eq.1)


It is given  S₁₀=235

  10/2[2a+9d]=235

10a+45d=235   (eq.2)

Usind elimination method for eq.1 and eq.2

We get d=5.

12a+31d=167

12a=167-31(5)

12a=167-155

12a=12

=> a=1.

Now that we have got a and d, we can find the A.P

.:The A.P is 1, 6, 11, 16.....

    HOPE IT WAS HELPFUL....!

Similar questions